34 research outputs found

    On quantum group SL_q(2)

    Full text link
    We start with the observation that the quantum group SL_q(2), described in terms of its algebra of functions has a quantum subgroup, which is just a usual Cartan group. Based on this observation we develop a general method of constructing quantum groups with similar property. We also describe this method in the language of quantized universal enveloping algebras, which is another common method of studying quantum groups. We carry our method in detail for root systems of type SL(2); as a byproduct we find a new series of quantum groups - metaplectic groups of SL(2)-type. Representations of these groups can provide interesting examples of bimodule categories over monoidal category of representations of SL_q(2).Comment: plain TeX, 19 pages, no figure

    Duality between quantum symmetric algebras

    Full text link
    Using certain pairings of couples, we obtain a large class of two-sided non-degenerated graded Hopf pairings for quantum symmetric algebras.Comment: 15 pages. Letters in Math. Phy., to appear soo

    Braided Hopf algebras obtained from coquasitriangular Hopf algebras

    Full text link
    Let (H,σ)(H, \sigma) be a coquasitriangular Hopf algebra, not necessarily finite dimensional. Following methods of Doi and Takeuchi, which parallel the constructions of Radford in the case of finite dimensional quasitriangular Hopf algebras, we define HσH_\sigma, a sub-Hopf algebra of H0H^0, the finite dual of HH. Using the generalized quantum double construction and the theory of Hopf algebras with a projection, we associate to HH a braided Hopf algebra structure in the category of Yetter-Drinfeld modules over HσcopH_\sigma^{\rm cop}. Specializing to H=SLq(N)H={\rm SL}_q(N), we obtain explicit formulas which endow SLq(N){\rm SL}_q(N) with a braided Hopf algebra structure within the category of left Yetter-Drinfeld modules over Uqext(slN)copU_q^{\rm ext}({\rm sl}_N)^{\rm cop}.Comment: 43 pages, 1 figur

    The Hopf modules category and the Hopf equation

    Full text link
    We study the Hopf equation which is equivalent to the pentagonal equation, from operator algebras. A FRT type theorem is given and new types of quantum groups are constructed. The key role is played now by the classical Hopf modules category. As an application, a five dimensional noncommutative noncocommutative bialgebra is given.Comment: 30 pages, Letax2e, Comm. Algebra in pres

    Bicovariant Quantum Algebras and Quantum Lie Algebras

    Get PDF
    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from \fun\ to \uqg\ , given by elements of the pure braid group. These operators --- the `reflection matrix' Y≡L+SL−Y \equiv L^+ SL^- being a special case --- generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for YY in SOq(N)SO_q(N).Comment: 38 page

    Generalized diagonal crossed products and smash products for quasi-Hopf algebras. Applications

    Full text link
    In this paper we introduce generalizations of diagonal crossed products, two-sided crossed products and two-sided smash products, for a quasi-Hopf algebra H. The results we obtain may be applied to H^*-Hopf bimodules and generalized Yetter-Drinfeld modules. The generality of our situation entails that the "generating matrix" formalism cannot be used, forcing us to use a different approach. This pays off because as an application we obtain an easy conceptual proof of an important but very technical result of Hausser and Nill concerning iterated two-sided crossed products.Comment: 41 pages, no figure

    Strong Connections on Quantum Principal Bundles

    Full text link
    A gauge invariant notion of a strong connection is presented and characterized. It is then used to justify the way in which a global curvature form is defined. Strong connections are interpreted as those that are induced from the base space of a quantum bundle. Examples of both strong and non-strong connections are provided. In particular, such connections are constructed on a quantum deformation of the fibration S2−>RP2S^2 -> RP^2. A certain class of strong Uq(2)U_q(2)-connections on a trivial quantum principal bundle is shown to be equivalent to the class of connections on a free module that are compatible with the q-dependent hermitian metric. A particular form of the Yang-Mills action on a trivial U\sb q(2)-bundle is investigated. It is proved to coincide with the Yang-Mills action constructed by A.Connes and M.Rieffel. Furthermore, it is shown that the moduli space of critical points of this action functional is independent of q.Comment: AMS-LaTeX, 40 pages, major revision including examples of connections over a quantum real projective spac

    Free q-Schrodinger Equation from Homogeneous Spaces of the 2-dim Euclidean Quantum Group

    Full text link
    After a preliminary review of the definition and the general properties of the homogeneous spaces of quantum groups, the quantum hyperboloid qH and the quantum plane qP are determined as homogeneous spaces of Fq(E(2)). The canonical action of Eq(2) is used to define a natural q-analog of the free Schro"dinger equation, that is studied in the momentum and angular momentum bases. In the first case the eigenfunctions are factorized in terms of products of two q-exponentials. In the second case we determine the eigenstates of the unitary representation, which, in the qP case, are given in terms of Hahn-Exton functions. Introducing the universal T-matrix for Eq(2) we prove that the Hahn-Exton as well as Jackson q-Bessel functions are also obtained as matrix elements of T, thus giving the correct extension to quantum groups of well known methods in harmonic analysis.Comment: 19 pages, plain tex, revised version with added materia

    Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

    Full text link
    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g)U_q(g). They have the same FRT generators l±l^\pm but a matrix braided-coproduct \und\Delta L=L\und\tens L where L=l+Sl−L=l^+Sl^-, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2)BM_q(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(\usl) (also known as the `quantum Lorentz group') is the semidirect product as an algebra of two copies of \usl, and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.Comment: 45 pages. Revised (= much expanded introduction

    Twist Deformations of the Supersymmetric Quantum Mechanics

    Full text link
    The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its Universal Enveloping Superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist-deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed.Comment: 18 pages; two references adde
    corecore